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Abstract
● Binary features: fast to compute, compact to store and efficient to 

compare with each other
● Can still be too slow to use linear search in the case of large 

datasets
● Introduction to a new algorithm for approximate matching of binary 

features, based on priority search of multiple hierarchical clustering 
trees



Related Work
● Salakhutdinov and Hinton: Introduction of the Notion of semantic 

hashing when they learn a deep graphical model that maps 
documents to small binary codes

● Torriba et al.: Learn compact binary codes from images with the 
goal of performing real time image recognition on a large dataset of 
images using limited memory

● Weiss et al.: Formalize the requirements for good codes and 
introduce a new technique for efficiently computing binary codes



Binary descriptors
● Binary descriptor composed of

○ A sampling pattern
○ Orientation compensation
○ Sampling pairs 

● Recently proposed binary visual descriptors: 
○ BRIEF
○ ORB
○ BRISK



Other methods: BRIEF 

Daisy

BRIEF: binary robust independent elementary features, 
Calonder, V Lepetit, C Strecha, ECCV 2010

Randomly sample pair of pixels a and b.  
1 if a > b, else 0.  Store binary vector. 

Slide of Larry Zitnick 
(larryz@microsoft.com)

mailto:larryz@microsoft.com


ORB and BRISK descriptors

● ORB:
○ Uses an orientation compensation mechanism, 

making it rotation invariant
○ learns the optimal sampling pairs, whereas BRIEF 

uses randomly chosen sampling pairs
● BRISK: 

○ having a hand-crafted sampling pattern, composed 
out of concentric rings

For more information very good tutorial on http://gilscvblog.wordpress.com/2013/11/08/



Approximate nearest neighbour search
● Using linear search for matching can be practical only for smaller 

datasets
● Vector-based Features: SIFT and SURF, use of approximate 

nearest-neighbor search
○ SURF (Speeded up robust features)

■ relying on integral images for image convolutions
■ building on the strengths of the leading existing detectors 

and descriptors
■ simplifying these methods to the essential



Approximate matching algorithms
● For matching vector features: 

○ kd-tree algorithm
○ hierarchical k-means tree
○ vocabulary tree

● Perform a hierarchical decomposition of the search space 
● Not readily suitable for matching binary features

○ Assumes feature space can be continuously averaged



Approximate matching algorithms
● Matching binary features is mostly based on various hashing 

techniques
○ Locality Sensitive Hashing (LSH)
○ min-hash
○ Geometric Near-Neighbor Access Tree (GNAT)

● here: based on hierarchical decomposition of search space
● Implemented on FLANN



Algorithm Overview
“The algorithm performs a hierarchical decomposition of the 
search space by successively clustering the input dataset 
and constructing a tree in which every non-leaf node 
contains a cluster center and the leaf nodes contain the 
input points that are to be matched.”



Building the Tree
● Clustering similar to k-medoids in that cluster 

centers are input data points and not means

● Centers are randomly chosen, we are not trying 
to minimize the distance between cluster centers 
and their elements

○ Simpler and more efficient

○ Improves independence when using 
multiple trees in parallel

● Minimizing squared error and using the greedy 
approach in choosing cluster centers as in the 
GNAT tree did not improve performance



Using Multiple Trees
● Searching multiple randomized trees has been successful for randomized kd-trees but not 

hierarchical k-means trees

● This algorithm also exhibits improved performance when using multiple trees

○ No further iterations to improve clustering

○ Worst case occurs when the closest neighbor to the query point lies across the boundary 
of the explored domain, resulting in backtracking

■ Trees are randomized enough so that the closest neighbor is likely to lie in different 
domains in different trees

■ Increases the likelihood that the closest neighbor is found quickly when trees are 
searched in parallel



Parallel Tree Search
● Starts with a single traverse of each tree

○ Always picking node closest to the query 
point and recursively exploring it 

■ Adds unexplored nodes to a 
priority queue PQ.

○ At a leaf node all the points contained 
within are linearly searched and added 
to a priority queue R

● Search is continued by dequeuing from PQ 
the node that is closest to the query and 
resuming the traversal from there.

● Ends when the number of points examined 
exceeds a maximum limit, returning the K 
approximate nearest neighbors from R



Parallel Tree Search
● L limits the number of points examined

○ Determines degree of approximation

■ Higher L - more exact neighbors, 
but searching takes longer

○ Relationship between L and the desired 
search precision is determined 
empirically for each dataset using cross 
validation



Performance Evaluation

● Speedup over linear search
● Analyze the effect of different parameters
● Compare with other approx-NN algorithms
● Dataset of ~310,000 BRIEF features



Evaluation: Number of Trees
● The optimum number of trees 

depends on the desired search 
precision

● More trees means more memory 
and longer build time, so the 
optimum configuration depends on 
real world constraints



Evaluation: Branching Factor
● Higher branching factors perform better 

for high precisions (>80%)

○ Little gain for branching factors 
above 16 or 32

● Very large branching factors perform 
worse for lower precisions and have a 
higher tree build time.



Evaluation: Leaf Size
● Maximum leaf size of 150 performs 

better than a small leaf size (16, which 
is equal to the branching factor) or a 
large leaf size (500). 

● Computing the distance between 
binary features is an efficient 
operation, so for small leaf sizes the 
overhead of traversing the tree to 
examine more leaves is greater

● Cost of linearly examining all the 
features in large leaves ends up being 
greater than the cost of traversing the 
tree.



Evaluation: Other Features/Algorithms



Evaluation: Other 
Features/Algorithms

Using best performing algorithm for each particular feature type (randomized kd-trees or 
hierarchical k-means for SIFT, SURF, NCC and our algorithm for BRIEF and ORB) using the 
optimum choice of parameters which maximizes the speedup for a given precision.



Evaluation: Other 
Features/Algorithms



Evaluation: Scalability
● Scales well across multiple 

computing clusters 

● Additional benefit that the size of the 
dataset is not limited by the memory 
available on a single machine

○ Binary features are generally 
more compact, but for very 
large datasets the memory 
available on a single machine 
can become a limiting factor. 

● FLANN uses a MapReduce algorithm 
to run the search on multiple 
machines and merges the search 
results at the end.



Conclusion
● New algorithm for fast approximate matching of binary features
● Using parallel searching of randomized hierarchical trees
● Algorithm is implemented on top of the publicly available FLANN 

open source library
● Simple to implement and efficient to run
● Very effective at finding nearest neighbors of binary features
● Performance of the algorithm is on par or better with that of LSH 
● Scales well for large datasets


