
Fast Matching Of
Binary Features

By Marius Muja and David G. Lowe

Presented By: Patricia Oeking & David Zhang

Abstract
● Binary features: fast to compute, compact to store and efficient to

compare with each other
● Can still be too slow to use linear search in the case of large

datasets
● Introduction to a new algorithm for approximate matching of binary

features, based on priority search of multiple hierarchical clustering
trees

Related Work
● Salakhutdinov and Hinton: Introduction of the Notion of semantic

hashing when they learn a deep graphical model that maps
documents to small binary codes

● Torriba et al.: Learn compact binary codes from images with the
goal of performing real time image recognition on a large dataset of
images using limited memory

● Weiss et al.: Formalize the requirements for good codes and
introduce a new technique for efficiently computing binary codes

Binary descriptors
● Binary descriptor composed of

○ A sampling pattern
○ Orientation compensation
○ Sampling pairs

● Recently proposed binary visual descriptors:
○ BRIEF
○ ORB
○ BRISK

Other methods: BRIEF

Daisy

BRIEF: binary robust independent elementary features,
Calonder, V Lepetit, C Strecha, ECCV 2010

Randomly sample pair of pixels a and b.
1 if a > b, else 0. Store binary vector.

Slide of Larry Zitnick
(larryz@microsoft.com)

mailto:larryz@microsoft.com

ORB and BRISK descriptors

● ORB:
○ Uses an orientation compensation mechanism,

making it rotation invariant
○ learns the optimal sampling pairs, whereas BRIEF

uses randomly chosen sampling pairs
● BRISK:

○ having a hand-crafted sampling pattern, composed
out of concentric rings

For more information very good tutorial on http://gilscvblog.wordpress.com/2013/11/08/

Approximate nearest neighbour search
● Using linear search for matching can be practical only for smaller

datasets
● Vector-based Features: SIFT and SURF, use of approximate

nearest-neighbor search
○ SURF (Speeded up robust features)

■ relying on integral images for image convolutions
■ building on the strengths of the leading existing detectors

and descriptors
■ simplifying these methods to the essential

Approximate matching algorithms
● For matching vector features:

○ kd-tree algorithm
○ hierarchical k-means tree
○ vocabulary tree

● Perform a hierarchical decomposition of the search space
● Not readily suitable for matching binary features

○ Assumes feature space can be continuously averaged

Approximate matching algorithms
● Matching binary features is mostly based on various hashing

techniques
○ Locality Sensitive Hashing (LSH)
○ min-hash
○ Geometric Near-Neighbor Access Tree (GNAT)

● here: based on hierarchical decomposition of search space
● Implemented on FLANN

Algorithm Overview
“The algorithm performs a hierarchical decomposition of the
search space by successively clustering the input dataset
and constructing a tree in which every non-leaf node
contains a cluster center and the leaf nodes contain the
input points that are to be matched.”

Building the Tree
● Clustering similar to k-medoids in that cluster

centers are input data points and not means

● Centers are randomly chosen, we are not trying
to minimize the distance between cluster centers
and their elements

○ Simpler and more efficient

○ Improves independence when using
multiple trees in parallel

● Minimizing squared error and using the greedy
approach in choosing cluster centers as in the
GNAT tree did not improve performance

Using Multiple Trees
● Searching multiple randomized trees has been successful for randomized kd-trees but not

hierarchical k-means trees

● This algorithm also exhibits improved performance when using multiple trees

○ No further iterations to improve clustering

○ Worst case occurs when the closest neighbor to the query point lies across the boundary
of the explored domain, resulting in backtracking

■ Trees are randomized enough so that the closest neighbor is likely to lie in different
domains in different trees

■ Increases the likelihood that the closest neighbor is found quickly when trees are
searched in parallel

Parallel Tree Search
● Starts with a single traverse of each tree

○ Always picking node closest to the query
point and recursively exploring it

■ Adds unexplored nodes to a
priority queue PQ.

○ At a leaf node all the points contained
within are linearly searched and added
to a priority queue R

● Search is continued by dequeuing from PQ
the node that is closest to the query and
resuming the traversal from there.

● Ends when the number of points examined
exceeds a maximum limit, returning the K
approximate nearest neighbors from R

Parallel Tree Search
● L limits the number of points examined

○ Determines degree of approximation

■ Higher L - more exact neighbors,
but searching takes longer

○ Relationship between L and the desired
search precision is determined
empirically for each dataset using cross
validation

Performance Evaluation

● Speedup over linear search
● Analyze the effect of different parameters
● Compare with other approx-NN algorithms
● Dataset of ~310,000 BRIEF features

Evaluation: Number of Trees
● The optimum number of trees

depends on the desired search
precision

● More trees means more memory
and longer build time, so the
optimum configuration depends on
real world constraints

Evaluation: Branching Factor
● Higher branching factors perform better

for high precisions (>80%)

○ Little gain for branching factors
above 16 or 32

● Very large branching factors perform
worse for lower precisions and have a
higher tree build time.

Evaluation: Leaf Size
● Maximum leaf size of 150 performs

better than a small leaf size (16, which
is equal to the branching factor) or a
large leaf size (500).

● Computing the distance between
binary features is an efficient
operation, so for small leaf sizes the
overhead of traversing the tree to
examine more leaves is greater

● Cost of linearly examining all the
features in large leaves ends up being
greater than the cost of traversing the
tree.

Evaluation: Other Features/Algorithms

Evaluation: Other
Features/Algorithms

Using best performing algorithm for each particular feature type (randomized kd-trees or
hierarchical k-means for SIFT, SURF, NCC and our algorithm for BRIEF and ORB) using the
optimum choice of parameters which maximizes the speedup for a given precision.

Evaluation: Other
Features/Algorithms

Evaluation: Scalability
● Scales well across multiple

computing clusters

● Additional benefit that the size of the
dataset is not limited by the memory
available on a single machine

○ Binary features are generally
more compact, but for very
large datasets the memory
available on a single machine
can become a limiting factor.

● FLANN uses a MapReduce algorithm
to run the search on multiple
machines and merges the search
results at the end.

Conclusion
● New algorithm for fast approximate matching of binary features
● Using parallel searching of randomized hierarchical trees
● Algorithm is implemented on top of the publicly available FLANN

open source library
● Simple to implement and efficient to run
● Very effective at finding nearest neighbors of binary features
● Performance of the algorithm is on par or better with that of LSH
● Scales well for large datasets

