Fast Matching Of
Binary Features

By Marius Muja and David G. Lowe

Presented By: Patricia Oeking & David Zhang

Abstract

e Binary features: fast to compute, compact to store and efficient to

compare with each other
e Can still be too slow to use linear search in the case of large

datasets
e Introduction to a new algorithm for approximate matching of binary

features, based on priority search of multiple hierarchical clustering
trees

Related Work

e Salakhutdinov and Hinton: Introduction of the Notion of semantic
hashing when they learn a deep graphical model that maps
documents to small binary codes

e Torriba et al.: Learn compact binary codes from images with the
goal of performing real time image recognition on a large dataset of
Images using limited memory

e \Weiss et al.: Formalize the requirements for good codes and
introduce a new technique for efficiently computing binary codes

Binary descriptors

e Binary descriptor composed of
o A sampling pattern
o Qrientation compensation
o Sampling pairs
e Recently proposed binary visual descriptors:
o BRIEF
o ORB
o BRISK

Other methods: BRIEF

Randomly sample pair of pixels a and b.
1ifa>Db, else 0. Store binary vector.

Fig. 2. Different approaches to choosing the test locations. All except the righmost one
are selected by random sampling. Showing 128 tests in every image.

BRIEF: binary robust independent elementary features,

Slide of Larry Zitnick Calonder, V Lepetit, C Strecha, ECCV 2010

(larryz@microsoft.com)

mailto:larryz@microsoft.com

ORB and BRISK descriptors

e ORB:

o Uses an orientation compensation mechanism,
making it rotation invariant

o learns the optimal sampling pairs, whereas BRIEF
uses randomly chosen sampling pairs

e BRISK:

o having a hand-crafted sampling pattern, composed
out of concentric rings

Approximate nearest neighbour search

e Using linear search for matching can be practical only for smaller

datasets
e Vector-based Features: SIFT and SURF, use of approximate
nearest-neighbor search
o SURF (Speeded up robust features)
m relying on integral images for image convolutions
m building on the strengths of the leading existing detectors

and descriptors
m simplifying these methods to the essential

Approximate matching algorithms

e For matching vector features:

o kd-tree algorithm

o hierarchical k-means tree

o vocabulary tree
e Perform a hierarchical decomposition of the search space
e Not readily suitable for matching binary features

o Assumes feature space can be continuously averaged

Approximate matching algorithms

e Matching binary features is mostly based on various hashing
techniques
o Locality Sensitive Hashing (LSH)
o min-hash
o Geometric Near-Neighbor Access Tree (GNAT)
e here: based on hierarchical decomposition of search space
e Implemented on FLANN

Algorithm Overview

“The algorithm performs a hierarchical decomposition of the
search space by successively clustering the input dataset
and constructing a tree in which every non-leaf node
contains a cluster center and the leaf nodes contain the
input points that are to be matched.”

Building the Tree

Clustering similar to k-medoids in that cluster
centers are input data points and not means

Centers are randomly chosen, we are not trying
to minimize the distance between cluster centers
and their elements

o Simpler and more efficient

o Improves independence when using
multiple trees in parallel

Minimizing squared error and using the greedy
approach in choosing cluster centers as in the
GNAT tree did not improve performance

Algorithm 1 Building one hierarchical clustering tree

Input: features dataset D
Output: hierarchical clustering tree
Parameters: branching factor K, maximum leaf size Sp,
1: if size of D < S1, then
2: create leaf node with the points in D
3: else
4: P < select K points at random from D
5 C' < cluster the points in D around nearest centers
P
for each cluster C; € C do
create non-leaf node with center P;
recursively apply the algorithm to the points in C;
end for
10: end if

Y %2 xR

Using Multiple Trees

e Searching multiple randomized trees has been successful for randomized kd-trees but not
hierarchical k-means trees

e This algorithm also exhibits improved performance when using multiple trees

o No further iterations to improve clustering

o Worst case occurs when the closest neighbor to the query point lies across the boundary
of the explored domain, resulting in backtracking

Trees are randomized enough so that the closest neighbor is likely to lie in different
domains in different trees

Increases the likelihood that the closest neighbor is found quickly when trees are
searched in parallel

Algorithm 2 Searching parallel hierarchical clustering trees

P I I I T S h Input: hierarchical clustering trees 7;, query point ()
a ra e re e e a rc Output: K nearest approximate neighbors of query point
Parameters: max number of points to examine L., 4,
1: L < 0 {L = number of points searched}

e Starts with a single traverse of each tree

2: PQ) < empty priority queue
. 3: R < empty priority queue
o Always picking node closest to the query 4: for each tree T} do
point and recursively exploring it s: call TRAVERSETREE(T;, PQ,R)
6: end for
m Adds unexplored nodes to a 7: while PQ not empty and L < L,,q, do
priority queue PQ. 8: N « top of PQ
9: call TRAVERSETREE(N,PQ,R)
o At aleaf node all the points contained 10: end while

within are linearly searched and added 11: return K top points from R

to a prioritv queue R procedure TRAVERSETREE(NV,PQ,R)
P ¥4 1: if node N is a leaf node then

2: search all the points in N and add them to R
L+ L+ |N|

4: else

5. C <« child nodes of N

6: Cg4 < closest node of C to query Q

7

8

e Search is continued by dequeuing from PQ
the node that is closest to the query and
resuming the traversal from there.

w

e Ends when the number of points examined C, < C\C,
exceeds a maximum limit, returning the K add all nodes in C, to PQ

approximate nearest neighbors from R 9: fla{é TRAVERSETREE(Cy, PQ,R)
10: end 1

Parallel Tree Search

e L limits the number of points examined
o Determines degree of approximation

m Higher L - more exact neighbors,
but searching takes longer

o Relationship between L and the desired
search precision is determined
empirically for each dataset using cross
validation

Algorithm 2 Searching parallel hierarchical clustering trees

Input: hierarchical clustering trees 7;, query point ()
Output: K nearest approximate neighbors of query point
Parameters: max number of points to examine L., 4,

1:

H
e

11:

R AT A

L < 0 {L = number of points searched}
PQ < empty priority queue
R < empty priority queue
for each tree T; do
call TRAVERSETREE(T;, PQ,R)
end for
while P(Q) not empty and L < L., do
N < top of PQ
call TRAVERSETREE(N,PQ,R)
end while
return K top points from R

procedure TRAVERSETREE(N,P(Q,R)

1:
2:

w

4:

®

9:
10:

if node N is a leaf node then
search all the points in N and add them to R
L+ L+ |N|
else
C < child nodes of N
C, < closest node of C to query Q
Cp < C\Cy
add all nodes in Cp, to PQ
call TRAVERSETREE(C,, PQ,R)
end if

Performance Evaluation

Speedup over linear search

Analyze the effect of different parameters
Compare with other approx-NN algorithms
Dataset of ~310,000 BRIEF features

Evaluation: Number of Trees

e The optimum number of trees 10°
depends on the desired search
precision

e More trees means more memory
and longer build time, so the
optimum configuration depends on
real world constraints

1 tree
10" | ¥—v 2trees
+<—< 3 trees
>—> 4 trees
— 8 trees

16 trees

Speedup over linear search

05 0.6 0.7 0.8 0.9 1.0
Search Precision(%)

Evaluation: Branching Factor

e Higher branching factors perform better 10°
for high precisions (>80%)

o Little gain for branching factors
above 16 or 32

-
o
N

e Very large branching factors perform
worse for lower precisions and have a
higher tree build time.

e—e branching 2
| ¥—¥ branching 4
<— branching 8
>—> branching 16
~— branching 32
branching 64

=N
o_\

Speedup over linear search

05 06 0.7 08 0.9 1.0
Search Precision(%)

Evaluation: Leaf Size

e Maximum leaf size of 150 performs
better than a small leaf size (16, which
is equal to the branching factor) or a
large leaf size (500).

e Computing the distance between
binary features is an efficient
operation, so for small leaf sizes the
overhead of traversing the tree to
examine more leaves is greater

e Cost of linearly examining all the
features in large leaves ends up being
greater than the cost of traversing the
tree.

Speedup over linear search

10°

o—eo |eaf size 16
v—~v |eaf size 150
<+— |eaf size 500

0
1045

0.6

0.7 0.8 0.9 1.0
Search Precision(%)

Other Features/Algorithms

Evaluation

Random sample of query patches and the first three nearest neighbors returned when using different feature types

Figure 1.

Evaluation: Other
Features/Algorithms

10*

e—e NCC_16 (256 bytes)
v—v SIFT (128 floats)
<+—< SURF (64 floats)
>—> BRIEF (256 bits)
ORB (256 bits)

10°

102

Speedup over linear search

10°
0.5 0.6 0.7 0.8 0.9 1.0

Search Precision(%)

ms)

Search time/query point (

10"

-
(=]
=)

N
e

-
o
)

103

e—e NCC_16 (256 bytes)
v—v SIFT (128 floats)
<+—< SUREF (64 floats)
t| = BRIEF (256 bits)
ORB (256 bits)

05 06 0.7 08 0.9 1.0

Search Precision(%)

Using best performing algorithm for each particular feature type (randomized kd-trees or
hierarchical k-means for SIFT, SURF, NCC and our algorithm for BRIEF and ORB) using the
optimum choice of parameters which maximizes the speedup for a given precision.

Evaluation: Other
Features/Algorithms

10° ; . . . 10*

Speedup over linear search
-— -

o o
N w

:

Speedup over linear search

-—
<

XY]
+—+ Hierarchical \ +—+ Hierarchical %

e o |SH e o |SH
L 100

0 | L ! I L L
1045 06 07 08 0.9 1.0 05 0.6 07 08 0.9 1.0

Search Precision(%) Search Precision(%)

Figure 7. Comparison between the hierarchical clustering index and LSH for the Winder/Brown dataset of about 100,000 features(left) and the
Nister/Stewenius recognition benchmark images dataset of about 5 million features(right)

Evaluation: Scalability

Scales well across multiple
computing clusters

Additional benefit that the size of the
dataset is not limited by the memory
available on a single machine

o Binary features are generally
more compact, but for very
large datasets the memory
available on a single machine
can become a limiting factor.

FLANN uses a MapReduce algorithm
to run the search on multiple
machines and merges the search
results at the end.

Speedup over linear search

10* |

1 process

2 processes
4 processes
6 processes
8 processes
16 processes

0.6

0.7

0.8
Search precision(%)

0.9

1.0

Conclusion

New algorithm for fast approximate matching of binary features
Using parallel searching of randomized hierarchical trees
Algorithm is implemented on top of the publicly available FLANN
open source library

Simple to implement and efficient to run

Very effective at finding nearest neighbors of binary features
Performance of the algorithm is on par or better with that of LSH
Scales well for large datasets

